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Abstract: An important objective of brain tumor modeling is to predict the progression of tumors so as to provide guid-

ance about the best possible medical treatment to halt or slow the tumor’s growth. Such computer models also provide a 

deeper insight into the physiology of tumors. In addition, one can study various what-if scenarios, for instance, investigat-

ing the response of tumors following the administration of a drug or a variety of drugs. Abrupt changes in growth rate can 

also be important for surgical decision-making. Despite increased interest in modeling techniques, relatively little progress 

has been made in improving such technologies. One problem is the limited data available from patients, typically 1 to 3 

MRI (magnetic resonance imaging) sessions, from which one has to extrapolate the type of tumor so as to successfully 

predict its evolution over time.  

Here, the biological and clinical aspects of tumor growth and treatment with surgery, radiotherapy and drugs are discussed 

in the light of a patient with a brain tumor showing accelerated growth over time. Then, the contributions of mathematical 

modeling of tumor growth and effects of treatment are presented. Current tumor growth models can be roughly divided in 

three main categories, (i) cellular and microscopic models that emphasize isolated cell behavior, (ii) macroscopic models 

that concentrate on the development of cell density over time, and (iii) hybrid approaches that contain elements of both 

microscopic and macroscopic models. The mathematical theory that underlies these simulation methods is remarkably 

similar to the physical theory that forms the basis of protein modeling and molecular mechanics tools. A severe limitation 

of current models is that they are in fact not patient-specific at all.  

INTRODUCTION 

 A 36-year-old male enters the hospital due to blackout 
and amnesia. MRI scans reveal a relatively small but malig-
nant brain tumor. The man is eventually diagnosed with 
anaplastic astrocytoma which is operated radically the fol-
lowing day. The patient recovers from surgery but later de-
velops slight clumsiness in his left leg and arm. He receives 
standard radiotherapy and CCNU treatment. Some residual 
tumor is seen on the MRI scan, and because of the tumor’s 
growth and worsening symptoms, the patient is operated 
again 2 years 4 months after the first operation. After macro-
scopically total tumor removal, the residual cell growth ac-
celerates and the patient is operated for the third time only 7 
months after the second operation. His clinical outcome al-
lows for this operation and he feels better after the last opera-
tion. However, the tumor progresses and enormous growth is 
seen on the MRI shortly after the third operation. The pa-
tient’s clinical condition also deteriorates and he is hospital-
ized. Tumor growth continues uncontrollably and the patient 
dies at the age of 40 years, over four years after the first op-
eration. 

 Brain tumors are the leading cause of cancer death in 
children and the second most common cause of cancer death 
in young adults, and they account for a significant proportion 
of cancer deaths in older adults [1, 2]. The above patient case  
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exemplifies the typical progression of malignant brain tu-
mors and the difficulties of treating such tumors success-
fully. Brain tumors consist of a wide range of tumors of 
which gliomas are the most common. These infiltrative tu-
mors can be divided into low and high grade according to 
their malignancy [3, 4]. Low grade gliomas are graded I-II 
and they are usually referred to as diffuse astrocytoma, oli-
godendroglioma and mixed glioma but the group also in-
cludes pilocytic astrocytoma, ependymoma, pleomorphic 
xanthoastrocytoma, subependymal giant cell astrocytoma 
and ganglioglioma [5]. Anaplastic astrocytoma, anaplastic 
oligodendroglioma (grade III) and glioblastoma multiforme 
(grade IV) are the most typical high grade gliomas.  

 Most neoplasms arise from a single altered cell with the 
progeny of that cell expanding as a neoplastic ”clone” [6]. In 
the case of brain tumors this clone usually grows in two 
ways. At first, the cells simply proliferate and increase tumor 
core mass, but then at some subsequent time cells become 
infiltrative and they invade surrounding normal brain tissue 
[7]. In order to grow, a tumor requires nutrients that are sup-
plied by the vasculature. After a tumor exceeds a few milli-
meters in size, it requires the production of new blood ves-
sels (angiogenesis) to meet its metabolic demands. Other 
factors influencing glioma growth are hypoxia and apoptosis. 

 Tumor progression means that tumors often become 
more aggressive and more malignant, although the time 
course may be quite different depending on the histological 
characteristics of the tumor [8]. Gliomas have the capacity to 
invade surrounding normal brain which usually prevents 
complete removal of the tumor. Therefore, malignant recur-
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rence may also represent an aggressive component of the 
original tumor that was missed on the first resection [9]. 

 The time to recurrence and the type of the recurrent tu-
mor are highly variable and, in general, cannot be predicted 
from the histopathological and clinical characteristics of the 
primary tumor [10]. Low grade astrocytomas often recur and 
progress to higher malignancy. Some astrocytomas show no 
change in histological grade over more than 10 years follow-
ing the first operation, whereas others show a rapid transition 
to malignancy within 1-2 years. However, progression from 
anaplastic astrocytoma to glioblastoma occurs within ap-
proximately 2 years [9, 11]. 

 This review will discuss various aspects of brain tumor 
growth and will provide an overview of simulation models 
for tumor growth. In silico approaches to study various bio-
logical systems and processes have become very mature. 
Various scientific disciplines have developed their own 
models and approaches, and in fact general theories of mod-
eling and simulation have emerged [12]. In particular the 
importance of mathematical modeling to study cancer has 
been recognized [13]. This review is organized as follows. 
First an overview of the factors that affect brain tumor 
growth is provided. This is followed by a review of theoreti-
cal methodologies that can be employed for the study of 
brain tumors, supplemented with a number of representative 
examples. The description of theoretical models is limited to 
those methodologies that describe one or more of the factors 
possibly affecting brain tumor growth. The focus is on con-
cepts, rather then on describing every recent development for 
each individual methodology. The review closes with a short 
discussion and an outlook on further developments. 

BRAIN TUMOR GROWTH 

 A malignant brain tumor represents an extremely compli-
cated system and its behavior is affected by a number of fac-
tors and (chemical) processes. Among these angiogenesis 
and hypoxia, necrosis and apoptosis, and motility and inva-
sion of neighboring tissues, are the most important ones. We 
present below a brief discussion of each of these so as to 
provide an overview of the life cycle of a tumor and a back-
ground for the simulation models. 

 The patient case introduced above provides a typical, 
although rarely so well documented, example of the growth 
of malignant gliomas, originally an anaplastic astrocytomas 
(WHO grade III, see below). Therefore, it serves as a back-
ground for this review. The life cycle of this particular tumor 
is illustrated in Fig. (1). At the outset based upon contrast-
enhanced MRI, this temporo-parietal subcortical tumor is 
about 4 cm in diameter Fig. (1a). The resection is radical 
leaving only a small part of the tumor behind Fig. (1b). Due 
to the location of the tumor the patient develops a weak pare-
sis in his left leg and arm after the resection. He also receives 
radiotherapy (RT) and chemotherapy (CCNU) after the re-
section due to the small residual and the nature of the infil-
trative astrocytoma. The tumor starts to grow slowly again 
and 18 months after the resection growth can be seen with 
MRI Figs. (1c and 1d). The growth continues and tumor re-
section is scheduled Fig. (1e). Prior to the operation the pa-
tient suffers again from worsened paresis of his left hand, but 
his overall clinical condition is good.  

 The postoperative MRI scans shows that the tumor bulk 
was removed macroscopically totally Fig. (1f). But the diffu-
sive nature of astrocytic tumors leads to growth again. This 
time growth is accelerated and soon the tumor size overtakes 
the size before the second operation Figs. (1g and 1h). The 
tumor has also progressed to glioblastoma multiforme (grade 
IV). The patient status before the third operation is fairly 
good; he is able to walk despite the left hemiparesis. He re-
covers well again after the operation and the left hemiparesis 
has partly improved. The operation is partial because the 
tumor has grown to areas which cannot be surgically re-
sected Fig. (1i). Shortly after the third operation (2 months) 
the tumor progresses to a very large size Figs. (1j and 1k)
and therefore cannot be surgically treated anymore. The pa-
tient’s condition deteriorates rapidly as tumor growth has 
become uncontrollable and the patient dies four and half 

years after the first surgery.

Angiogenesis and Hypoxia 

 Angiogenesis, the formation of new blood vessels from 
an existing vasculature, has been proven to be essential for 
the growth and expansion of tumors [14,15]. It is a complex 
and dynamic process which is regulated by several pro- and 
anti-angiogenic proteins. Among the pro-angiogenic factors 
(also termed mitogens, as they stimulate cell division) are for 
instance the vascular endothelial growth factor (VEGF) [16] 
and the basic fibroblast growth factor (bFGF), while com-
mon anti-angiogenic factors are for example angiostatin and 
endostatin [15, 17]. Angiogenesis requires new capillaries 
sprouting from existing blood vessels as well as endothelial 

precursor cells [18]. 

 It has been widely accepted that most tumors originate as 
small avascular masses [14] that induce the development of 
new blood vessels once they grow to 1-3 mm

3
 in size [19]. 

However, recent in vivo studies have identified an early stage 
in glioma growth that involves the recruitment of normal 
cerebral vessels before actual angiogenesis [20, 21]. Experi-
ments suggest that the following steps are involved in tumor 
growth: perivascular organization, proliferation, apoptosis 
and vascular involution or regression followed by necrosis 
and angiogenesis [21, 22]. 

 At some point, as the tumor grows, the normal tissue 
cannot support further growth and the tumor cells at the cen-
ter become necrotic as a consequence of a combination of 
hypoxia (nutritional deficiency) and increased mechanical 
pressure [23]. This in turn stimulates the tumor mass to re-
lease pro-angiogenic factors (also termed cytokines) that 
diffuse into the surrounding tissue, thus creating a concentra-
tion gradient of pro-angiogenic factors. The pro-angiogenic 
factors ultimately reach the endothelial cells of nearby blood 
vessels, triggering a series of events that eventually leads to 
the formation of new vessels that grow towards the tumor 
and subsequently penetrate it resulting in vascularization of 
the tumor. The up-regulation of VEGF in glioblastoma mul-
tiforme (GBM) is mediated by HIF (hypoxia-inducible fac-
tor) transcription factors, which under condition of hypoxia 
display an increased binding to a number of oncogenes [17]. 
The involution of host vessels also leads to hypoxia, which 

in turn induces VEGF release leading to angiogenesis [21].  
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 The new vessels grow in the direction of the tumor as a 
consequence of the initial chemotaxis of endothelial cells up 
the concentration gradient [24-27]. The establishment and 
maintenance of a sufficient vessel network are required for 
growth and expansion of normal and neoplastic tissue [28]. 
The tumor stimulates capillary proliferation which, in turn, 
promotes tumor growth. 

Apoptosis and Necrosis 

 Tumor tissue growth depends on cell proliferation and 
apoptosis. These two processes occur simultaneously with 
tumor suppressor gene, p53, regulating their complex rela-
tionship. As the tumor grows, cell proliferation often out-
weighs apoptosis [29, 30]. 

 Apoptosis is a highly regulated and energy-dependent 
form of cell death that is usually referred to as programmed 
cell death. Apoptosis gives rise to a distinct morphology of 
dying cells [31]. In contrast to apoptosis, necrosis is a pas-
sive form of cell death that results from acute cellular injury 
[32].  

 Apoptosis significantly influences the growth rate of a 
tumor and reflects genetic changes [33]. In astrocytic tumors 
a positive correlation between apoptosis and tumor grade has 
been reported [34] but the relationship between spontaneous 
apoptosis and glioma grade is not as straightforward. In 
glioblastomas, cell death occurs predominantly by the proc-
ess of necrosis rather than by apoptosis. Consequently, ne-
crosis is one of the glioblastomas’ histological features [35]. 

Fig. (1). A typical growth curve of a malignant brain tumor with pertinent MRI scans at 11 points of time. The patient has received both

chemo- and radiation therapy (CCNU and RT) after the first surgery and underwent through total of three surgeries (*). Last measurement 

shows an accelerated growth with tumor volume contrast enhanced mass over 120 cm
3

(**). See the text for additional details. (Marin and 

Koivukangas, Unpublished data). 
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Motility and Tumor Cell Invasion 

 Normal glial cells in vitro and probably in vivo are mo-
tile. This property is enhanced in brain tumor cells enabling 
these cells to invade the CNS (central nervous system) [36]. 
Cell migration appears to follow white matter tracts; the cor-
pus callosum and anterior commissure are among the major 
pathways for spread of astrocytomas. These two routes allow 
the tumors to spread from one hemisphere to the other. Indi-
vidual glioma cell migration tends to follow anatomical 
structures like basement membranes of blood vessels and 
glial limitans externa that contains extracellular matrix pro-
teins, or along myelinated fiber tracts of white matter [37]. 

 Gliomas are very invasive by nature. They are known to 
grow at a wide range of rates, but little is actually known 
about these rates or the extent of diffusion or infiltration into 
the surrounding brain [38]. Because of their natural motility 
and tendency to infiltrate or diffuse to surroundings, gliomas 
are rarely cured by surgical resection alone. Adjuvant thera-
pies, including the administering of new drugs, are common 
ways to treat such tumors. 

 There are generally three main factors that affect the 
spread of gliomas cells in the CNS, namely certain anatomi-
cal barriers, passive cell displacement, and active cell 
movement [39]. Specific anatomical and also biochemical 
barriers prevent tumor cells from metastasizing out of the 
CNS. It has been shown that leptomeningeal cells and asso-
ciated acellular components could act as a barrier for glioma 
cells, thereby preventing brain tumor cells from entering 
blood vessels, although cells from other types of cancers 
may pass [40]. Passive cell displacement is thought to be 
accommodated by the flow of the cerebrospinal fluid within 
the brain. To what extent this contributes to the actual spread 

of tumor cells is still unclear.  

 Active cell movement involves the interaction of cell 
surface receptors with numerous extracellular matrix mole-
cules (such as fibronection, a major component of the ex-
tracellular matrix enhancing the adhesion of cells to the ma-
trix, consequently affecting their ability to diffuse through 
the matrix), the secretion of proteases, cell signaling events, 
and the cytoskeleton. Active cell movement can be divided 
into three general components: protrusion of the leading 
edge of the cell, adhesion of the leading edge and deadhesion 
at the cell body and rear, and cytoskeletal contraction to pull 

the cell forward [41, 42]. 

WHO Grading System 

 To facilitate the classification of tumors
1
, the World 

Health Organization (WHO) has introduced a grading 
scheme [3, 43], where tumors are categorized according to 
their microscopic appearances. The scheme employs the mi-
totic index (growth rate), the vascularity (blood supply), the 
ability to invade neighboring tissues, the resemblance to 
normal cells, and the presence of a necrotic center as the 
classification criteria. The resulting grade serves as a meas-
ure for the level of malignancy. 

                                               
1 This section has been adopted from http://www.irsa.org/overview.html. 

 In this scheme, grade I tumors represent the least malig-
nant tumor. These tumors grow slowly and microscopically 
appear almost normal. Although surgery alone may be effec-
tive, if it is inaccessible for surgery even a grade I tumor may 
be life-threatening. Grade I tumors are often associated with 
long-term survival. Grade II tumors grow slightly faster than 
grade I tumors and have a slightly abnormal microscopic 
appearance. These tumors may invade surrounding normal 

tissue, and may recur as a grade II or higher grade tumor. 

 Grade III tumors are malignant. These tumors invade 
surrounding tissue and contain actively reproducing abnor-
mal cells. Grade III tumors frequently recur, often as grade 
IV tumors. Grade IV tumors are the most malignant and 
most problematic type of tumor. They have a great ability to 
invade wide areas of surrounding normal tissue. These tu-
mors reproduce rapidly, appear very unusual microscopically 
(they exhibit histological signs of very rapid grow) and are 
necrotic at the center. Such tumors stimulate new blood ves-

sel formation (angiogenesis) to support their rapid growth. 

 It should be noted that malignant tumors may in fact con-
sist of several grades of cells. Usually the most malignant 
grade of cell found determines the overall grade of the tu-

mor. 

SIMULATION MODELS 

 The development of theoretical models to study brain 
tumor in silico has been a very active field. Numerous mod-
els and simulations methods have emerged over the years. 
Current models to simulate the growth of brain tumors gen-

erally fall into three categories: 

• Microscopic models that emphasize the discrete nature of 

cells. 

• Macroscopic models that concentrate on the evolution of 

cell density over time and space. 

• Hybrid or multiple scale approaches that contain ele-

ments of both microscopic and macroscopic models. 

Single Cell Migration 

 Cell motility and migration play a critical role in a large 
number of biological systems, including cancer where metas-
tatic cells may migrate from the tumor mass to other loca-
tions [41, 42, 44]. The highly migratory behavior of the infil-
trative astrocytomas, a highly problematic brain tumor that 
ranges from low to high grade, makes them very difficult to 
resect, because there almost always remains a small fraction 
of tumor cells in the brain such that the tumor eventually 
progresses to higher grades [17, 45, 46]. However, the exact 
details of how tumor cells interact with the parenchyma re-

main elusive. 

 A number of modeling approaches that could provide 
insight into the determinants of migration concentrate on 
individual cell motility (see, for instance, references [47-
50]). Such a description is appropriate in the case of the 
aforementioned astrocytomas where individual tumor cells 
percolate through the central nervous system’s parenchyma 
[17]. A recent contribution to this field was made by Zaman 
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et al. [51, 52]. Most, if not all, other approaches are con-
cerned with movement on two dimensional (2D) surfaces 
(‘crawling’). Instead, Zaman et al. have modeled the active 
movement of a single cell in a three dimensional (3D) ma-
trix, which is more typical for cells. In the context of the 
topic of this work, the matrix would represent the paren-
chyma and the mobility considered is governed by hapto-

taxis. Chemotaxis was not considered in Zaman’s model.  

 Zaman et al. assume a stochastic approach, motivated by 
experimental data, so that a cell will display a random walk-
like behavior. The total force tF  acting on a single cell when 
the cell is moving through the matrix is composed of three 

contributions, 

tracprotrusiondragt FFFF ++= .          (1) 

 Here, the drag and protrusion force (the first two terms 
on the right, respectively) act as the viscous (frictional) and 
random force as they also do in the Langevin equation  
[53]. The drag force models the resistance of the matrix to 
cell motion, which is in turn caused by other forces acting on 
the cell (protrusion and traction, the latter being the third 
term on the right of Eq. (1)). This drag force is assumed to be 
proportional to the current velocity of the cell and depends 
on the viscosity of the matrix, a parameter of the model.  
The direction of the protrusion force, causing an extension of 
the cell in the direction of the force, is considered to be en-
tirely random and is caused by actin polymerization [41, 42, 

51, 52].  

 The traction force in Eq (1) is composed of two opposing 
forces, which model the ‘force per ligand-receptor complex’ 
at the trailing and leading ends of the cell, which depend in 
turn on Young’s modulus (a measure for the stiffness of ma-
terial) of the matrix. In addition, the traction forces depend 
on ‘adhesivity’, a measure of the strength of the binding be-
tween the receptors on the cell membrane and their ligands 

in the surrounding matrix.  

 While the model of Zaman et al. is simple indeed and 
possibly too general, it does succeed in providing qualitative 
insight into the process of cell movement and motility, an 
extremely complicated process. A key observation was that 
matrix stiffness strongly affects the cell motility, in addition 
to surface adhesion and tractile forces that are also apparent 
in 2D. Also steric factors, proteolysis (to allow migration 
through steric barriers where the pore size is significantly 
smaller than the cell dimension) and cell morphology play a 
role. An adapted version of such a model could therefore be 
employed to study the specifics of tumor cell motility in 

brain matter. 

Cellular Automaton Models 

 While the focus of the previous section was on a single 
cell, a basic starting point for cellular automaton (CA) mod-
els is that tumors are considered as a collection of interacting 
self-organizing cells. Simulation models based upon CA can 
provide insight into the collective behavior of cells, i.e. phe-
nomena that cannot be studied or explained by single cell 
models, such as those of the previous section. 

 In CA models of brain tumors, cells are modeled as the 
lattice sites

2
 of a large 2D or 3D lattice. Cells are therefore 

considered as discrete entities. Each lattice site has or is in a 
particular state which could be as simple as ‘dead’, ‘alive’ or 
‘vacant’ (the latter indicates that the lattice site is currently 
not occupied by any tumor cell) [54], but more elaborate 
schemes that mimic the cell life cycle more closely are of 
course possible and have in fact been implemented (e.g. see 
references [55-57]. The growth of the tumor is modeled by 
letting cells undergo cell division in which the daughter cell 
will occupy a neighboring vacant lattice site. 

 More formally, the excellent review by Moriera and 
Deutsch [58] defines CA models as a class of spatially and 
temporally discrete dynamic systems that undergo a variety 
of local interactions. They provide the following (adapted) 
list of main characteristics of CA: 

1. Discrete space: the accessible space is entirely defined by 
a regular lattice. The number of lattice sites is fixed. The 
lattice spacing and the number of sites define the length 
scale of the simulation. 

2. Discrete state: Each lattice site has or is in a particular 
state. The state is possibly composed of a finite number 
of sub-states, each referring to a particular aspect of a 
real tumor cell.  

3. Discrete dynamics: The simulation is performed in a 
number of discrete steps, each corresponding to a fixed 
time interval (time step). The total number of time steps 
defines the time scale of the simulation. The update of 
the system is synchronous (that is, all sites are updated 
simultaneously). 

4. Local rules: The evolution of the system is according to 
given transition rules. These are local rules in the sense 
that the dynamics of each lattice site depends only on the 
states of its immediate neighbors (e.g. the ability of a cell 
to produce an offspring through cell division depends on 
whether there is a neighboring vacant site.) 

5. Homogeneity: No site is different from any other site. 
The transition rules apply to each site in the same way at 
all times. 

 While these characteristics seem very rigid, it is quite 
possible to relax or to extend them. For instance, it is not at 
all required to allow only synchronous updates and it is cer-
tainly permissible to implement different transition rules for 
different lattice sites representing for instance different types 
of tumor cells. 

 Düchting [54] appears to be one of the first who has ap-
plied lattice models to simulate the response of a collection 
cells to certain events, such as the sudden removal of a por-
tion of the cells so as to model surgical removal of a tumor. 
During these early attempts, computing power was not read-
ily available and consequently the lattice sizes were neces-
sarily limited (e.g. a 10  10 lattice was employed by Dücht-
ing). Currently, lattices with dimensions of for instance 200 

                                               
2 The literature also commonly refers to lattice sites as lattice ‘cells’, ‘elements’ or 

‘nodes’. In order to avoid confusion with biological cells, the term lattice site is em-

ployed in this review. 
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x 200 or 100  100  100 are rather common. These dimen-
sions seem modest, but they are compatible with the number 
of atoms in for instance molecular dynamics simulation of 
proteins, where it is feasible to simulate tens of thousands of 
atoms [59, 60]. 

 An interesting example was recently provided by Kansal 
et al. [61]. These authors rely on 3D lattice model for tumor 
growth where the lattice is in fact not regular at all but is 
represented by a Delaunay lattice derived from a Vorronoi 
network (a collection of polyhedra), as illustrated in Fig. (2). 
The simulation protocol only allows cells that are relatively 
close to the surface to proliferate; cells located at the interior 
(center) are considered to be necrotic (this implies that the 
transition rules are not local). A nutrient gradient is imposed 
over the tumor as well so as to mimic diffusion limitations in 
necrotic regions of the tumor. Simulations were initiated 
from just a few cells allowing the tumor to pass through a 
multicellular tumor spheroid (MTS) until a macroscopically 
identifiable size is reached. This size is defined by a parame-
ter that is controlled by pressure responses due to an expand-
ing tumor. The model produces a tumor that displays a 
growth quite similar to that predicted by the classical Com-
pertz function (see next section). 

Fig. (2). Illustration of a 2D space lattice tiled into Voronoi cells. 

The dark portions represent lattice sites occupied by a tumor cell. 

(From reference [61], reprinted with permission from Elsevier, 

Copyright Elsevier. All rights reserved).

 CA-based models can easily be extended to introduce for 
instance a second tumor cell type with different growth pa-
rameters. As malignant tumors often consist of a number of 
distinct subclonal populations, Kansal et al. [62] further ex-
panded the original model to consider different tumor sub-
populations with different behavior and properties. The same 
CA model was also extended to simulate the important ef-
fects of angiogenesis during the early stages of brain tumor 
growth [63]. 

Macroscopic Models 

 Cellular automaton models are limited by the length 
scales that they can accommodate. This is an obvious conse-
quence of the limited size of the lattice. While it is quite pos-
sible to model tumor cell invasion into neighboring tissues, if 
the tissue is included in the lattice, it is generally not feasible 
to model tumor cells that spread to other regions of the brain. 
Generally, the processes by which tumor cells spread inside 
the central nervous system are extremely complex [39]. 
Brain tumors rarely metastasize outside the central nervous 
system, but malignant brain tumors are characterized by dif-
fuse infiltrative growth such that tumor cells can in fact dif-
fuse to very different regions of the brain (as exemplified in 
Fig. (1)). This is in particular true for glioblastoma multi-
forme (GBM), the most aggressive form of gliomas arising 
from glia or their precursors [17, 46]. 

 Continuum models of tumors concentrate on the average 
behavior of cell density instead of emphasizing the discrete 
nature of cells, while also considering the larger scale of cell 
behavior [68, 64-67]. The mathematical model is based upon 
a combination of a diffusion and a growth term (frequently 
termed the reaction-diffusion equation), 
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(first term on the right) and a proliferation (growth) term. 
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first law of diffusion [68]. 
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 Here, D is a diffusion constant which is a parameter of 
the model. In its simplest form, the brain is assumed to be a 
homogeneous medium through which cells are diffusing so 
that D has the same value everywhere. This term simply as-
sumes that cell migration is a Brownian-like random motion, 
an assumption very similar to that of Zaman et al. [51]. 
Typical values for D are in the range of 10

-3
 to 10

-2
 mm

2

day
-1

 [65, 67]. The exact value depends in fact on the mate-
rial, e.g. glioma cells migrate about 5 to 100 times faster in 
white brain matter than in gray [69]. It is quite possible to 
obtain independent estimates for D from simulations that 
concentrate on single cell migration (see the section on Sin-
gle cell migration above), although recent estimates have 
resulted in lower values of D in comparison to those ob-
tained from the observed motion of a moving glioma front 
[38]. 
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 The proliferation or growth term, the second term on the 
right of Eq (2), models the evolution of cells due to cell divi-
sion. This is commonly represented by a simple first order 
differential equation of the form, 

( )
( )( )tf

t
t

,
,

r
r

= .           (4) 

Several choices of f have been employed [67], 

kf =  (Exponential proliferation),        (5) 

m

mkf =  (Verhulst or Logistic Law),

 (6) 

=
mkf ln  (Compertz Law).         (7) 

 The factor k in Eqs (5) to (7) is a parameter with units of 
a rate constant. For the simplest approximation (exponential 
growth), it specifies the relative increase of cell density or 
concentration per unit time; a typical value is 0.0012 day

-1

[38, 65, 67]. A typical outcome of a simulation based upon 
Eq (2) is shown in Fig. (3). Note the strikingly similar ap-
pearance of Figs. (1) and (3) (they are not identical; Fig. (1)
shows a subcortical peripheral tumor growing centrally, 
whereas in Fig. (3) the tumor grows from a central location 
peripherally). 

Fig. (3). A typical outcome of a computer simulation of a truly 

three dimensional virtual brain tumor. The calculation is based 

upon a continuum approach. The thick black line defines the edge 

of the detectable tumor by MRI. The left column refers to the mo-

ment of diagnosis (the tumor’s dimension is about 3 cm), while the 

right shows the moment of death (the tumor’s dimension is about 6 

cm). Clearly observable is the density beyond the detectable edge of 

the tumor, emphasizing the highly diffusive nature of this tumor. 

(From reference [65], reprinted with permission from Nature Pub-

lishing Group, Copyright Nature Publishing Group. All rights re-

served).

 The Compertz Law for tumor growth has been and still is 
a very popular model to simulate the growth of a population 
of cells. Eqs (4) and (7) can be combined to give 

lnlnln == kk
t m .        (8) 

 The first term on the right refers to the actual growth (the 
parameter  is a growth rate constant), while the second is a 
decay term (the parameter  is a decay rate constant). The 
Compertz Law is appropriate for tumor cells in the absence
of migration of cells and interactions between cells. A solu-
tion of Eq (8) gives a sigmoidal function where the tumor 
exhibits an initial exponential growth, but slows down at a 
later stage due to various mechanisms (growth saturation). 
These mechanisms are not defined by the growth model. The 
original Compertz Law is a deterministic model. Albano and 
Giorno [70] have proposed a stochastic model that general-
izes the Compertz Law and accounts for possible fluctua-
tions in cell growth. Chignola et al. [71] observed time-
dependent fluctuations in the volume of a single MTS (mul-
ticellular tumor spheroid) and they were able to reproduce 
this behavior by introducing a white noise term in the classi-
cal Compertz Law. Both approaches are examples of a sto-
chastic description of population growth [72]. 

 With the formulation as expressed in Eq (2), it is possible 
to distinguish tumors according to the ratio k / D [38] that is 
compatible with the WHO grading system. A high grade 
tumor (e.g. GBM, grade IV) will display high proliferation 
and also high diffusion, while a low grade tumor (grade I) 
will display low proliferation and low diffusion. High grade 
tumors are consequently highly invasive and display a great 
tendency to migrate to other regions within the brain, so that 
there are always glioma cells far beyond the observable 
boundaries of the tumors. Resection of tumor mass has con-
sequently little effect. Very rapidly growing tumors that can 
be described with a high k / D ratio (low diffusion) are the 
solid tumors. 

 Burgess et al. [38] argued that the diffusion aspect of 
gliomas growth is the more important factor in modeling 
tumors. Diffusion of cells largely depends on the medium 
through which cells are diffusing. As noted above, the migra-
tory behavior of tumor cells is predominantly through white 
brain matter; the diffusion in white matter is about 5 to 100 
times higher than in gray matter [69]. The reaction-diffusion 
model can be adapted to this situation by assuming different 
values for the diffusion coefficient in white and grey matter. 
It is possible to take this even further by noting that cells 
preferentially diffuse along the direction of white matter fi-
ber tracts. To accommodate this anisotropy, it is required to 
consider the diffusion coefficient as a second order tensor 
instead of a scalar [65, 67]. 

 The basic equation for the continuum approach for tumor 
growth Eq (2) can be extended to accommodate for instance 
surgical resection and chemotherapy [65]. Resection is sim-
ply modeled by assigning zero densities at selected regions 
of the brain (usually the core of the tumor), after which the 
simulation is continued to monitor the tumor’s response. The 
qualitative behavior of real tumors is fairly well reproduced 
and shows for instance that the reappearance of the tumor is 
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the highest at the resection boundary. These continuum 
simulations also confirm the observation that high grade 
brain tumors cannot be cured by resection alone. As the con-
sequence of chemotherapy is cell death, Eq (2) is extended 
by a loss term of the form –G(t) (r, t) where G(t) is repre-
sentative for the drug(s) taken by the patient. G(t) is usually 
taken to be a constant. This approach reproduces reasonably 
well the qualitative behavior of real tumors. 

 Sander and Deisboeck [73] have proposed a full contin-
uum model that relies on two major processes for invasive 
microscopic brain tumors where cells undergo motion in 
response to (1) chemotaxis, caused by the gradient of nutri-
ent concentration, and (2) homotype factor attraction, which 
in fact is another form of chemotaxis, but is caused by the 
secretion of a particular chemical compound that attracts 
other cells. The latter process is similar to the initial event of 
angiogenesis where pro-angiogenic factors attract endothelial 
cells. In this full continuum approach, the motion of cells is 
described by a standard continuum equation, coupled to 
equations that describe the nutrient concentration (given 
from diffusion and consumption by cells) and the homotype 
factor concentration (given from diffusion, production by 
mobile cells, and decay). Haptotaxis was ignored in the 
study. 

 Venkatasubramanian et al. [74] proposed a model to in-
corporate energy metabolism into a growth model of tumors. 
While not specific for brain tumors, this model is another 
example of applying continuum equations. The tumor cell 
population is described by a similar equation as Eq (2), but 
the model is extended to predict the local glucose, oxygen 
and lactate concentrations, while also the production and 
consumption of ATP is accounted for. This model was ap-
plied to multicellular tumor spheroids to study the spatial 
distribution of proliferating, quiescent and dead cells, the 
latter two of which are strongly affected by diffusion limita-
tions of essential nutrients in tumors. 

 The ‘mechanical interaction’ (mass effect) of tumors with 
invaded tissue can be addressed by simulating brain defor-
mation. Clatz et al. [66] proposed to employ regular linear 
partial differential equations from classical continuum me-
chanics with the finite element method (FEM) to describe the 
mechanical behavior of brain parenchyma. In this model, the 
skull is included as a fixed entity and the parenchyma is as-
sumed to incompressible. 

Hybrid Models 

 The macroscopic approach as introduced in the previous 
section cannot be adapted to provide information about the 
fate of individual cells, as in CA-based methodologies. 
While CA-based methods can model interactions between 
cells, they are local. They cannot easily incorporate various 
types of ‘long-range’ interactions between the various cells 
(or cell types). Such interactions can occur in the form of 
certain chemical signals released for instance by necrotic 
cells at the center of multicellular spheroids, which diffuse 
through the tumor system and induce a movement of viable 
cells towards the center of the tumor [55]. Hybrid models 
combine elements from both macroscopic and microscopic 
approaches to overcome limitations in microscopic and mac-

roscopic methods and to explicitly describe phenomena that 
are ignored or cannot be described by these methods. 

 Dormann and Deutsch [55] introduce a hybrid model that 
explicitly takes into account mitosis, apoptosis and necrosis 
as well as nutrient consumption and diffusible chemical 
compounds (nutrient and a necrotic signal emitted by ne-
crotic cells). The CA lattice in this model is occupied by 
tumor and necrotic cells. Each lattice site has four ‘velocity 
channels’ and one ‘resting channel’ that can be occupied by 
at most one tumor or necrotic cell. The velocity channels 
give cells the ability to move through the lattice according to 
the ‘orientation’ (as defined by the velocity channel they 
currently occupy). The distributions of the chemical com-
pounds to which cells react are modeled by standard diffu-
sion equations. The rates of mitosis, apoptosis and necrosis 
(modeled by differential equations commonly employed in 
cell kinetics) at a given point in the lattice depend on the 
concentration of nutrient. The necrotic signal interferes with 
the movement of cells (chemotactic motility: cells move in 
the direction of the lowest concentration of necrotic signal). 
The model also allows cells to move towards regions with 
low cell concentration (pressure induced motility). Such a 
hybrid offers a way to couple important degrees of freedom 
whose dynamics occur at different length and time scales. 
Dormann and Deutsch [55] successfully employed this 
model to study avascular tumor growth of multicellular sphe-
roids. 

 The recent work of Athale et al. [56] links gene-protein 
interactions at the cellular level with behavior such as migra-
tion and proliferation. The intracellular EGFR-mediated sig-
naling pathway that affects both proliferation and migration 
(and therefore invasiveness) of gliomas cells was modeled as 
a simplified gene-protein network (Fig. (4)) using ordinary 
first order differential equations to simulate the time evolu-
tion of the various molecular species, including glucose and 
autocrine transforming growth factor (TGF ), the latter acti-
vating the EGFR response through phospholipaseC-  (PLC ). 
Cells were simulated as lattice sites of a 2D lattice as in CA 
and respond to concentration gradients of both glucose and 
TGF . Each cell was further divided into compartments al-
lowing for a heterogeneous distribution of molecular species 
within cells, as for instance accumulation of PLC  at the 
leading edge of the cell may affect its migratory behavior. 
This multiscale model was employed to study the ability of 
glioma cells to choose between a migrating and a proliferat-
ing phenotype, as experiments have indicated that cells never 
proliferate and migrate at the same time, the so-called di-
chotomy of glioma cells [75]. This basic model was further 
extended by Zhang et al. [57] to account for the effects of 
hypoxia and to include a more elaborated cell cycle. 

 A hybrid model to simulate the hugely important process 
of tumor-induced angiogenesis was recently introduced by 
McDougall et al. [26] (the application itself was not con-
cerned with brain tumors in particular), based upon the ear-
lier continuum model of Anderson and Chaplain [76]. The 
total change of cell density (endothelial cells) was governed 
by regular diffusion (first term of Eq (2)), chemotaxis in re-
sponse to TAFs, and haptotaxis (caused by gradients of fi-
bronectin). The TAF concentration was assumed to follow a 
simple loss (uptake) term representing some binding of TAF 
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to cells, while the fibronectin concentration was governed by 
a production (synthesis) and a loss (degradation of fibronec-
tion by cells) term. The resulting set of differential equations 
was solved in a 2D domain. Proliferation of endothelial cells 
was, however, modeled at a discrete level and in essence 
corresponded to a biased random walk of individual cells at 
the sprout tips, allowing for cell proliferation, branching and 
anastomosis (connections between blood vessels). This 
model was employed among other things to investigate the 
flow (blood, drugs) through the vascular network surround-
ing tumors as a function of for instance blood vessel size, 
fluid viscosity and blood vessel geometry. Such simulations 
can be employed for instance to judge the ability of anti-
angiogenesis or chemotherapeutic drugs to reach their tar-
gets. An example of a simulation that monitors the distribu-
tion of a drug in the vascular network is provided in Fig. (5). 

 Alarcón et al. [77, 78] introduce a model that is an exten-
sion of the hybrid cellular automaton. It accounts for blood 
flow, structural adaptation of the vasculature, transport of 
oxygen, interaction of tumor and normal tissue and cell life 
cycle. These authors strongly emphasize the suggestion that 
various processes that affect tumor growth take place at dif-
ferent time and length scales and that it is therefore neces-
sary to develop a model that couples these degrees of free-
dom. They divide their multiple scale model into ‘layers’, the 
vascular, the cellular and the intracellular layer, which corre-
spond to the tissue, cellular, and intracellular time and length 
scales, respectively, as exemplified in Fig. (6). As such the 
models of Alarcón et al. [77, 78] and Athale et al. [56] share 
a similar organization in that both models integrate various 
phenomena occurring at different scales. Alarcón et al. em-
ploy their model to investigate various aspects of tumor 

growth such as nutrient heterogeneity and growth laws, and 
the role of the protein p27 as a prognostic indicator. 

Fig. (4). Illustration of the complex gene-protein network, some of details are given in the text. (From reference [56]. Reproduced with per-

mission from Elsevier, Copyright Elsevier. All rights reserved). 

Fig. (5). Drug concentration as it flows from the parent vessel (lo-

cated at the top of each panel) into the vascular network. The snap-

shots in panels a to i were obtained at different times in the course of 

the simulation. (From reference [26], Reproduced with permission 

from Springer, Copyright Springer. All rights reserved). 
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DISCUSSION 

Clinical Impact 

 Modeling of the growth of malignant astrocytic tumors 
can be enhanced by examination of individual patients’ tu-
mor growth curves. Fig. (1) shows the typical development 
of growth of a representative high grade tumor from a patient 
series. This patient was operated under intraoperative MRI 
guidance several times, and after each successive surgical 
resection, the growth of the tumor accelerated. Also, the ef-
fect of surgical resection on tumor size decreased each time.  

 The effect of surgical resection on a patient’s survival is 
always uncertain. Tumor progression is related to accelera-
tion of the tumor growth. More malignant tumor tissue con-
tains more proliferating cells and new blood vessels provide 
nutrients for the growth. Individual cell invasion also affects 
the benefit of such operation because glioma cells diffuse 
beyond observable boundaries, leading to tumor recurrence 
after surgical resection. Therefore, therapies that affect mo-
tile cells are effective and treatment should be targeted to 
these cells as well as to the tumor bulk. Theoretical models 
of tumor growth can be used to predict the growth of a tumor 
and in theory may have an impact on the decision process to 
select an appropriate treatment for a given case. 

Benefit of Computer Modeling 

 Computer modeling of tumor growth can be a powerful 
tool not only to understand why tumors grow as they do, but 
to provide prognostic estimates of future tumor growth. The 
effect of new drugs such as temozolomide (Temodal) and of 
surgical resection can be studied using these kinds of mod-
els. Examples of such models were given above. 

 However, the most interesting aspects of tumor growth 
modeling lie in three basic questions: First, can the growth 
models provide retrospective information as to the starting 
point in time and space when the single tumor cell started to 
multiply, eventually leading to a clinical tumor? Second, can 
changes in the rate of growth signal the optimal timing for 
surgery or other therapy? This would be needed especially in 
the case of low grade tumors, which are typically stable for 
years, but then tend to start growing more rapidly at a later 
point in time, especially if they undergo malignant transfor-
mation. Third, is the outcome of a computer simulation spe-
cific for a given patient and/or tumor? The first question has 
not been considered by computer simulation, while the sec-
ond can be addressed to a certain degree by macroscopic 
simulations [65, 69]. The identification of the starting point 
of the tumor in principle could be determined from a brute 
force approach; many simulations each with different start-
ing conditions, the one resembling the given patient data the 
best may reveal the starting point. However, one should bear 
in mind that such macroscopic simulations provide general 
results at best. The answer to the third question as to whether 
the simulation outcome truly reflects a given tumor of a 
given patient has to be negative. 

 To consider such important questions, and given the fact 
that tumor growth is obviously an extremely complicated 
process, very sophisticated simulation models will be re-
quired that consider brain tumor growth as a multiple scale 
process (e.g. as in Fig. (6)). The latter aspect is of particular 
relevance since it should be clear now from this review that 
the events that affect tumor growth take place at the various 
levels or layers (length scales), are mutually coupled, and 
occur at different time scales ranging from 10

-6
 seconds to 

years [56, 77, 78]. For instance, as detailed earlier, the re-

Fig. (6). Illustration of the coupling of events affecting tumor growth at various levels, layers or length scales (From reference [77], Repro-

duced with permission from the Society for Industrial and Applied Mathematics, Copyright Society for Industrial and Applied Mathematics. 

All rights reserved). 
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lease of pro-angiogenic factors is triggered by a deficiency of 
nutrients (such as glucose) which affects the intracellular 
pathways (intracellular or molecular level, as in Fig. (4). 
These factors diffuse through the tissue space creating a 
chemical concentration gradient (macroscopic or vascular 
level) and reaching nearby vessels ultimately stimulating the 
formation of new blood vessels. These new vessels ulti-
mately provide nutrients to necrotic cells, which may then 
change their cell state (cellular layer), ultimately stimulating 
the further growth of the tumor. 

 Without such a coupling and a sufficiently deep level of 
detail, computer simulation models for tumor growth are 
doomed to remain general in nature and will never become 
patient-specific. The latter concept of predictive individual-
ized care is of particular importance. If such computer simu-
lations models are to become truly relevant in a clinical con-
text, they should be patient-specific to be able to reliably 
decide whether or not one should operate in a given situa-
tion. It also should become possible to predict the chance of 
success of a certain treatment for a given patient, while at the 
same time one should be able to distinguish between pa-
tients.  

 Better tumor growth models are also needed to better 
understand the effects of radiotherapy and new cytostatic and 
other drugs. Often, the effects of drugs are judged from their 
ability to bind to given targets (proteins), either through 
computational approaches [60, 79] or by experiment. While 
such investigations are important and certainly necessary, the 
effects of these drugs at the larger scale of tumor develop-
ment however cannot be inferred from such detailed atomis-
tic investigations and consequently requires a different ap-
proach. A number of these ‘less-molecular’ approaches were 
briefly explained in this review. 

 The argument that such models may become too com-
puter intensive and that there still are too many uncertainties 
in the current understanding of tumor growth are of course 
valid. For instance, there are many genes involved in cancer, 
all of which may have a role in the signaling pathway or any 
other (possibly still unknown) process affecting brain tumor 
growth. Nevertheless, ongoing and future efforts to develop 
more sophisticated models for tumor growth should bear the 
issue of a patient-specific model for tumor growth in mind. 
The so-called hybrid or multiscale models probably have the 
highest chance of achieving this goal. The development of 
more sophisticated models requires further investment in the 
development of smarter but also more efficient software that 
take advantage of recent development in scientific comput-
ing and improved computing infrastructure (e.g., parallel 
computing, communication protocols between processor 
cores, dual- or quad- or multi-core central processing units, 
etc). 

CONCLUSIONS 

 Over the years a number of theoretical models for the 
simulation of the growth of brain tumors have been devel-
oped and applied with various degrees of success. Explicit 
models are limited by the length and time scale, but can han-
dle many more details, while continuum models can cover 
large length and time scales but necessarily need to leave out 

many important details that are relevant to tumor growth. A 
better understanding of the biological events in tumor growth 
and progression, coupled with clinical insight, can lead to 
more comprehensive tumor growth models. It appears that 
more promising models combine various levels of descrip-
tion into a single model (‘hybrid’ or ‘multiscale’ model) for 
brain tumor growth. Such models should have the best pos-
sible chance of becoming truly patient-specific and conse-
quently can play an increasingly important role in the clinical 
setting. 
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ABBREVIATIONS 

MRI = Magnetic resonance imaging 

CCNU = A chemotherapy agent  

RT = Radiotherapy 

VEGF = Vascular endothelial growth factor 

bFGR = Basic fibroblast growth factor 

CNS = Central nervous system 

CA = Cellular automaton 

GBM = Glioblastoma multiforme 

MTS = Multicullelar tumor spheroid 

TAF = Tumor angiogenic factor 
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